• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Review of deep learning-based weed identification in crop fields

  • Abstract: Automatic weed identification and detection are crucial for precision weeding operations. In recent years, deep learning (DL) has gained widespread attention for its potential in crop weed identification. This paper provides a review of the current research status and development trends of weed identification in crop fields based on DL. Through an analysis of relevant literature from both within and outside of China, the author summarizes the development history, research progress, and identification and detection methods of DL-based weed identification technology. Emphasis is placed on data sources and DL models applied to different technical tasks. Additionally, the paper discusses the challenges of time-consuming and laborious dataset preparation, poor generality, unbalanced data categories, and low accuracy of field identification in DL for weed identification. Corresponding solutions are proposed to provide a reference for future research directions in weed identification.

     

/

返回文章
返回