• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Unmanned aerial vehicle (UAV)-assisted pesticide application for pest and disease prevention and control in rice

  • Abstract: Unmanned Aerial Vehicles (UAVs) have emerged as innovative tools in agriculture, revolutionizing crop protection practices and the use of pesticide combinations to aid the management of insect pests and diseases in a single application. This research delves into assessing the efficacy of drone-based pesticide spraying utilizing combinations of pesticides to combat insect pests and diseases in rice cultivation. In kharif 2022, the physically compatible combination of insecticides (chlorantraniliprole 18.5% SC and tetraniliprole 200 SC) with fungicides (picoxystrobin 7.5%+tricyclazole 22.5% SC and tebuconazole 50%+trifloxystrobin 25% WG) were administered via drones and compared with conventional Taiwan sprayer. The results indicated that tebuconazole+trifloxystrobin, when applied via drones, exhibited the highest control efficacy against the brown spot, sheath blight, and sheath rot (47.8%, 77.4%, and 75.2% respectively). Moreover, combination treatment, i.e., tetraniliprole+(tebuconazole+trifloxystrobin), applied using a drone, achieved the most effective control (78.1%) against grain discoloration. Additionally, drone-based tetraniliprole application showed effectiveness against stem borer and whorl maggot (efficacy rates of 49.1%, 66.6%, and 60.7% for dead hearts, white ear, and whorl maggot, respectively). Overall, the pesticide combination treatment, i.e., tetraniliprole+(tebuconazole+trifloxystrobin), showed higher control efficacy against all the insect pests and diseases and recorded the highest grain yield of 7995 kg/hm2 with an incremental cost-benefit ratio (ICBR) of (1:5.63) when sprayed with a drone. Overall, this study underscores the potential of drone-assisted pesticide application in effectively managing multiple insect pests and diseases in rice, offering superior precision, efficacy, efficiency, and yield.

     

/

返回文章
返回