Optimized design and experiment of a fully automated potted cotton seedling transplanting mechanism
-
Graphical Abstract
-
Abstract
In order to improve the accuracy and stability of transplanting machine seedling picking, a seedling pick-up mechanism was designed, which was controlled by a controller and driven by brushless DC servo motor. At the same time, the parameters of the seedling manipulator were optimized: the mathematical model for the seedling pick-up mechanism was established. According to the predetermined trajectory requirements, the objective function and constraint conditions were proposed, and then the optimal size was obtained by a multi-objective genetic algorithm. At last, Automatic Dynamic Analysis of Mechanical Systems (ADAMS) software was used to simulate and analyze the kinematics and trajectory of the seedling pick-up mechanism, and the mechanism was tested to verify the effectiveness of the mechanism prototype. The experiments showed that the success rate of seedling picking was 94.32%, the rate of acceptably planted seedlings was 96.67%, and the rate of excellently planted seedlings was 63.48%.
-
-