Fine-grained detection of caged-hen head states using adaptive Brightness Adjustment in combination with Convolutional Neural Networks
-
Graphical Abstract
-
Abstract
Timely identification and tracking of abnormal hens in stacked cages are of great significance for precision treatment and the elimination of sick individuals. The head features of the caged-hens are used to overcome observation difficulties caused by the cage and feathers blocking, but it is still hard to identify similar head states. To solve this problem, the fine-grained detection of caged-hens head states was developed using adaptive Brightness Adjustment in combination with Convolutional Neural Networks (FBA-CNN). Grid Region-based CNN (R-CNN), a convolution neural network (CNN), was optimized with the Squeeze-and-Excitation (SE) and Depthwise Over-parameterized Convolutional (DO-Conv) to detect layer heads from cages and to accurately cut them as single-head images. The brightness of each single-head image was adjusted adaptively and classified through the deep convolution neural network based on SE-Resnet50. Finally, we returned to the original image to realize multi-target detection with coordinate mapping. The results showed that the AP@0.5 of layer head detection using the optimized Grid R-CNN was 0.947, the accuracy of classification with SE-Resnet50 was 0.749, the F1 score was 0.637, and the mAP@0.5 of FBA-CNN was 0.846. In summary, this automated method can accurately identify different layer head states in layer cages to provide a basis for follow-up studies of abnormal behavior including dyspnea and cachexia.
-
-